
MODELLING COMPLEX
CYBER-PHYSICAL SYSTEMS:

IS SUITABLE
VERSIONING EVEN
POSSIBLE?

LieberLieber Software

2 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

In our everyday practice of model-based systems engineering in various branches of industry, we
repeatedly encounter the question of precise and easy-to-handle versioning of models. This ques-
tion is becoming increasingly important due to legal regulations, stricter safety regulations and the
significant increase in product variants. Therefore, we are responding to a frequently expressed
wish and answering the question in this white paper as to whether clean versioning is possible at
all when modelling complex cyber-physical systems. To do this, we first look at what constitutes
a complex system and why clean release is more difficult today when modelling such systems.
Then we turn to practical matters by analysing the versioning process in more detail and describing
the resulting requirements for tools. Finally, in the summary you will find the recommendations for
achieving clean model versioning based on our decades of experience. So follow us on our journey
into the land of unlimited variants and learn how to always keep them safely under control with the
help of clean versioning.

MODELLING COMPLEX
CYBER-PHYSICAL SYSTEMS:
IS SUITABLE VERSIONING
EVEN POSSIBLE?

 Modern systems in transport, healthcare, etc. are now cyber-physical systems. This means that they
increasingly combine classic mechanical components with electronic and software components. Such a
system is characterised by its high degree of complexity, which is growing rapidly, especially due to the
spread of software. As a recent study (1) shows, companies are relying on the introduction of systems
engineering to cope with this omnipresent complexity, which is now even seen as critical to the future
viability of companies.

To visualise the dimension of the proliferation of complex cyber-physical systems, the transport sector is
very suitable. Aircraft, for example, are large networks of on-board computers and embedded systems
in many individual units. Without these embedded systems, not even the turbines could start. And even

cars („PC on wheels“) and trains are no longer functio-
nal today without on-board computers and embedded
control systems. Reliability and safety of these systems
are therefore of utmost importance. Networked systems,
thousands of which work and communicate in a complex
overall system, require a whole new quality of reliability
and safety.

WHAT IS A
COMPLEX SYSTEM?

WHERE DOES THE COMPLEXITY BECOME
VISIBLE IN EVERYDAY LIFE?
Of course, the electronic and software systems only become
noticeable when they fail - for example, when the new
car breaks down. Such failures already account for a high
proportion of the warranty costs for new cars.

(1) Study 2021: Systems Engineering in Germany - A Comparison of the German Corporate Landscape - Prozesswerk in Cooperation with GfSE

3 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

WHY IS CLEAN VERSIONING
NECESSARY?
With the proliferation of cyber-physical systems and rapidly increasing digitalisation, companies
today are facing major changes. Mechanical and electrical requirements are increasingly taking a
back seat, while software is taking over most of the value creation. However, the systems are also
becoming more complex and challenges are arising that were previously unknown. A central solu-
tion approach for this is model-based systems engineering (MBSE). Here, information about a sys-

tem to be developed is no longer based on documents, but on models. These
models are usually created on the basis of the UML or SysML specification
and help to better cope with central challenges such as safety, agile develop-
ment processes and the work of distributed development teams.

 Since many versions and variants of models naturally arise in such an agile
and complex environment, clear and secure versioning is particularly import-
ant. In order to strengthen trust in model-based systems engineering, it has to
be clearly demonstrated that clean versioning is guaranteed and controllable
at all times in the development process.

Precise versioning becomes particularly important when using agile methods,
since new versions are created at short intervals and you still have to keep
track of everything. Agile software development refers to approaches in the
software development process that increase transparency and the speed of
change and are intended to lead to faster use of the developed system. The
design phase is shortened and attention is paid to achieving executable soft-
ware as early as possible. This is regularly coordinated with the client in order
to increase customer satisfaction.

Agile software development is characterised by self-organising teams and a
step-by-step approach. In international companies, there is a clear trend to-
wards virtual teams that work together across regional, national and cultural
borders as well as time zones.

VERSIONING MAKES IT
POSSIBLE TO PROVE
THAT ALL SAFETY
REGULATIONS HAVE
BEEN TAKEN INTO
ACCOUNT IN THE MODEL
Functional safety is becoming
increasingly important, especially
in cyber-physical systems, and is
mandatory in legal regulations.
Put simply, safety refers to the
protection of the environment
from an object.Taking cars as an
example, growing digitalisation
with the goal of autonomous
driving is currently leading to ever
stricter specifications in the area
of safety, so that cars do not cause
damage to their environment
despite software-assisted driving.
This is not least a question
of liability in the event of an
accident or technical failure.

4 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

HOW CAN
CORRECT VERSIONING
BE REALISED?
Due to the challenges described above, it is important to follow a versioning strategy that guaran-
tees control over individual versions and changes at all times.

The central element is the maintenance of a clear history of the development of a system that results
from (parallel) changes. It must be possible to precisely identify and reference individual versions.
This also makes it possible to select older versions of the system to be developed in order to use
them as the basis for a new development or to create a variant of them. Projects are no longer de-
veloped from scratch, but often build on existing development efforts. Therefore, it must be possible
to go back to any point in the development history to set up the new project from there.

Another important aspect is the personal allocation of development efforts: Which developer made
which change and when. In this way, certain changes can be specifically removed from the project
in order to be able to quickly undo them, for example, if necessary.

Both the increasing complexity and the ever shorter release cycles of modern software systems
make it necessary to develop different model versions in parallel. Added to this is the challenge that
these systems are being developed in ever larger and more distributed teams. In the course of a
model-based approach, such teams must also be given the opportunity to work efficiently on par-
allel versions of a model. Last but not least, the integration of established versioning systems such
as Git into the modelling process is indispensable.

 Agile development processes are now widespread in classical software development and optimis-
tic versioning processes have thus also become established. Based on these processes, methods/
processes such as GitFlow, Continuous Integration/Continuous Development or DevOps became
established. In this white paper, we want to analyse the GitFlow process in more detail and how it
can also be used for the world of modelling.

The central idea here is to develop on the basis of feature bran-
ches. Gitflow is a git-branching model that uses long-lived fea-
ture branches and multiple primary branches. Developers create
a feature branch and delay merging with the main trunk branch
until the feature is complete. This way, Git-Flow automatically
brings a unified structure to each project, which is especially be-
neficial when many developers are working on a project at the
same time. Due to the parallel branches, several features can be
developed, a release prepared and hotfixes carried out at the
same time. This makes the model ideal for larger projects.

THE ADVANTAGES OF
GITFLOW
The Gitflow workflow offers all
the advantages of the feature
branch model: pull requests,
isolated experiments and more
efficient collaboration. The
workflow also uses a central
repository as a communication
hub for all developers.

5 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

REQUIREMENTS
FOR TOOLS
For the practical implementation of clean versioning in the development of complex systems, sui-
table tools are needed. In this paragraph, we will show which requirements for these tools result
from the circumstances described above.

PRECISE DETECTION AND MERGING OF CHANGES

In the development phase of complex systems, innumerable model versions naturally arise.
Therefore, the most important function of a tool is the detailed comparison and easy merging
of different versions. This requires a precise and fine-granular recognition of changes that have
been made. Conventional approaches in software development use line- and text-based appli-
cations for this purpose, but they are not sufficient for graphical models. In addition, knowledge
of the semantics of the modelling language is also important. A change report at database level
or through XML files is neither user-friendly nor does it allow for a clean merge of changes.

USER-FRIENDLY REPRESENTATION OF CHANGES

In order to version well with a tool, it is not only important to make precise and complete chan-
ges at the model level, but also to present the changes in a way that is easy to understand.
Model elements can be moved, changed, deleted or added. Moreover, such elements are often
represented in several diagrams. In order to maintain an overview, the changes must be easily
recognisable. Only in this way the developer is able to get a good picture of what is happening
and also understand the changes made by other contributors.

CONFLICTS IN CHANGES AND THEIR INTERDEPENDENCIES

When several people make changes in models, conflicts can arise. Therefore, a tool must calcu-
late these conflicts precisely. After all, a conflict should only be reported if it is not automatically
resolved during the merge and human interaction is necessary. Then, with the help of the tool,
it must be possible to easily merge these changes and thus eliminate the conflicts. In this pro-
cess, it is the task of the tool to reliably ensure the validity of the model.

Since proven processes, workflows and tools are already used in practice, models must be able
to interact with them. The modelling tool must therefore enable seamless integration into exis-
ting versioning systems (SVN, Git, PTC, etc.) and industrial application lifecycle management
(ALM) tools.

6 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

EDITING PARTIAL MODELS

Today, entire supplier chains are involved in the development process of complex systems,
each of which contributes only a part to the overall system. In classic „product line develop-
ment“, it is therefore inevitable that parts of models can also be processed by different suppliers
with one tool and then reintegrated into the overall system. This process is further complicated
by countless product variants and the trend towards so-called „platform strategies“ (e.g. one
floor assembly for different vehicle types).

This means that it must be ensured that different elements and parts of the overall system can
be worked on by different development teams at different times and in different places and ulti-
mately be integrated back into the overall system. Thus, an overall system is actually a system
of many subsystems. In this scenario, a tool must ensure that there are no system conflicts or
that information is not lost either when model parts are detached or reintegrated.

Anforderungen
an Werkzeuge

SUMMARY AND
RECOMMENDATIONS
In the course of the increasingly agile orientation in software development,
our customers ask us again and again whether modelling and agility go well
together. Our opinion on this is quite clear and has also been proven in va-
rious studies: Only with properly applied modelling can agile processes be
implemented at all in the face of increasing complexity, if you also want to
document all regulations and requirements in a comprehensible way. As an
example, in this white paper we have dealt with the question of whether
clean versioning is possible at all in complex systems.

Our answer to this is clearly yes, but it requires corresponding experience
and suitable tools. According to our decades of experience, the tool chain
we recommend for implementation around Enterprise Architect, LemonTree
and Git is currently the best prerequisite for realising clean versioning at the
cutting edge of technology. In our opinion, the potential of this tool chain is
currently unique on the market and opens up completely new possibilities
for our customers.

HERMANN GOLLWITZER,
WORKING AS A SYSTEM
ARCHITECT FOR
INFOTAINMENT SYSTEMS
AT VW:
„With LieberLieber‘s active
support, we succeeded in making
model-based systems engineering
(MBSE) the backbone of our
development organisation. The
control of all versions and variants
of the models created in the
development process was for us
the most important requirement
for the stable anchoring of MBSE
in the company. LieberLieber
supported us very well with
profound practical knowledge
as well as with tools such
as Enterprise Architect and
LemonTree and thus promoted the
internal work of persuasion.“

7 Modelling complex cyber-physical systems: Is suitable versioning even possible?
LieberLieber Software

LEMONTREE:
THE RIGHT TOOL
FOR CLEAN VERSIONING
LemonTree has been specifically designed to meet the above requirements for tools:

 X Accurate change detection and merging

 X User-friendly representation of changes

 X Precise handling of conflicts in changes and their interdependencies

 X Editing of partial models

 X Reuse of proven processes (Git, DevOps etc.)

The central task of LemonTree is to support team-based collaboration in today‘s complex projects
in the best possible way, and it is constantly being expanded with new releases. For example, a
partial model (or the entire model) can still be managed as EAP(x) in versioning systems such as Git,
which effectively supports the work of distributed teams. If a component of the model has evolved
during parallel editing, it can be easily re-imported thanks to the intelligent merge function. The
dependency analysis integrated in LemonTree is used to define model parts more precisely before
export. Mutual dependencies can be examined or eliminated if necessary. Simple dependencies
and cyclical dependencies between model packages are clearly shown.

8

LieberLieber Software
Handelskai 340, Top 5
1020 Vienna, Austria
+43 662 90600 2017

Dipl.-Ing. Rüdiger Maier, M.A.
Head of PR

Dr. Konrad Wieland
CEO

Please contact us under
welcome@lieberlieber.com

Responsible for
the content

The Authors

